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Abstract

In this paper, a two-point boundary value problem for an integrodifferential equation is studied. This
equation describes the dynamics of an inclined stretched string suspended between a fixed support and a
vibrating support. Due to the inclination, the string will vibrate under combined parametrical and
transversal excitation. The attention will be focused on time-periodic solutions consisting of one mode
(semi-trivial solution) generated by transverse (external) excitation and two modes (non-trivial solution)
generated by combined parametrical and transverse excitation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a perfectly flexible string in a stretched situation. At the end x ¼ 0 the string is
attached to a horizontal plane and at x ¼ 1 the other end is fixed to a vertical rigid bar, which is
excited in horizontal direction. A sketch of the vibrating system is given in Fig. 1. The case studied
is when the system is embedded in an elastic medium where Hooke’s law applies. In the literature
[1–3], one usually studies vibrating strings positioned along a horizontal plane and excited either
vertically or horizontally. Belhaq and Houssni [4] studied the dynamic response of a one-degree-
of-freedom system with quadratic non-linearities and subjected to combined parametric and
external excitations. The system can serve as a model for the one-mode vibration of a heavy elastic
structure suspended between two fixed supports at the same level and excited by a quasi-periodic
forcing. Perkins [5] studied modal interactions in the non-linear response of suspended elastic
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cables under parametrical and external excitations with horizontal position of the cable. Zhang
and Tang [6] investigated analytically the global dynamic behaviour of an elastic cable under
combined parametrical and external excitations. The system describes a model for the coupling
between in- and out-of-plane modes of a suspended elastic cable between a fixed support and a
vibrating support. Lilien and Pinto da Costa [7] studied pure parametric excitation of an inclined
elastic cable with a small sag. He et al. [8] studied the control of seismic excitation of a cable-
stayed bridge by means of special dampers.

In a recent paper by Nielsen and Kirkegaard [9], the in- and out-of-plane excitation of an
inclined elastic cable with a small sag is investigated. In contrast to the present paper, primary
parametric excitation due to longitudinal excitation is not considered by them. As is known from
experimental work by, e.g., Melde [10], this primary parametric excitation in stretched strings may
lead to a transverse response. In this paper, a system with combined transverse (i.e., perpendicular
to the X -axis as indicated in Fig. 1) and longitudinal (i.e., in the direction of the X -axis) excitation
due to the angle j between the string and the horizontal plane will be investigated.

The mathematical model for this system is an extension of the model given in Refs. [1,11]. The
extension concerns the term p2V describing the elasticity of the medium in which the system is
embedded and the time-periodic boundary condition at x ¼ 1: The mathematical model obtained
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Fig. 1. A simple vibrating system including parametrical and transversal excitation of a stretched inclined string.
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in this way is as follows:

%Vttðx; tÞ � %Vxxðx; tÞ þ p2 %Vðx; tÞ

¼ e %Vxxðx; tÞ
1

2

Z 1

0

%V2
xðx; tÞ dx þ A sinðltÞ

� �
� ea %Vtðx; tÞ; xAð0; 1Þ; t > 0;

%Vð0; tÞ ¼ 0; t > 0;

%Vð1; tÞ ¼ eB sinðltÞ; t > 0; ð1Þ

where 0oe51; aX0; p2
X0; l > 0; A ¼ C cosðjÞ; B ¼ C sinðjÞ and %Vðx; tÞ is the transverse

displacement. The magnitudes of A and B are of the same order implying that the angle j between
the string and the horizontal plane is of order 1. In model (1) gravitation is not considered,
implying that there is no sag. Hence, the parametric excitation only applies to elastic elongations.
Additional elongation due to the presence of the sag due to gravity will be studied in a subsequent
paper. This type of elongation is also relevant in a practical situation. Model equation (1) is of
particular relevance for shorter stays in cable-stayed bridges. In this paper, formal approxima-
tions to the solutions of the boundary value problem (1) will be constructed by using a Fourier
mode expansion. Subsequently, the averaging method [12] will be applied and for special
combinations of l and p2; periodic solutions will be studied. Values of l and p2 for which a
periodic solution consisting of two modes exist, are determined. Those values will give rise to
mode interaction. The interesting cases p2 ¼ 0 and l near 2p are considered. Especially, the
interaction between the first and the second mode is studied.

2. Analysis of the model equation

Consider the two-point boundary value problem for the integrodifferential equation (1) with a
small parameter e: To reduce the problem to a problem with homogeneous boundary values, the
following transformation is used:

%Vðx; tÞ ¼ eBx sinðltÞ þ V ðx; tÞ: ð2Þ

Substitution of Eq. (2) into Eq. (1) yields

Vtt � Vxx þ p2V

¼ eðl2 � p2ÞBx sinðltÞ þ eVxx
1

2

Z 1

0

V2
x dx þ A sinðltÞ

� �
� eaVt þ Oðe2Þ;

V ð0; tÞ ¼ Vð1; tÞ ¼ 0: ð3Þ

The eigenfunctions and the eigenvalues of the Sturm–Liouville problem,

�
d2Vn

dx2
þ p2Vn ¼ m2

nVn;

Vnð0Þ ¼ Vnð1Þ ¼ 0; ð4Þ

related to homogeneous unperturbed system (3) (i.e., e ¼ 0) are VnðxÞ ¼ qn sinðnpxÞ and m2
n ¼

p2 þ n2p2; respectively, where qn; n ¼ 1; 2; 3;y; are constants. The Oðe2Þ terms are neglected;
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exact solutions Vðx; tÞ of Eq. (3) exist in the form of a Fourier sine-series (eigenfunction-series):

V ðx; tÞ ¼
XN
n¼1

qnðtÞ sinðnpxÞ: ð5Þ

By substituting Eq. (5) into Eq. (3) and using the orthogonal properties of the eigenfunctions, one
obtains an infinite-dimensional system for qn:

.qn þ m2
nqn ¼ �e n2p2qn

XN
k¼1

1

4
k2p2q2

k þ A sinðltÞ

 !
þ a ’qn � ðl2 � p2ÞBcn sinðltÞ

( )
; ð6Þ

where cn ¼ ð�1Þðnþ1Þð2=npÞ; n ¼ 1; 2;y :
Notice that system (6) can be expected to have solutions whenever the series in the right-hand

side converges. It is assumed that V ðx; tÞ is a twice continuously differentiable function with
respect to x on the open interval ð0; 1Þ: In the framework of this paper, the assumption about the
differentiability is satisfied as follows conditions on initial values as given Ref. [13]. In the actual
paper, the attention is focused on periodic solutions implying that no initial values are considered.
However, one can associate initial values as defined in Ref. [13] with the periodic solutions studied
in this paper. By using integration by parts, it follows that the coefficients qn of series (5) are of
order n�2: Therefore, the series in the right-hand side of Eq. (6) converges if all qn are sufficiently
small.

In system (6), the frequency of the vertical and parametrical excitations is l: There are two
values of l which are of interest for the study of periodic solutions:

ðiÞ l ¼ mm; ðiiÞ l ¼ 2ms;

where m and s are certain values of n: As is well known, (i) corresponds to elementary resonance
whereas (ii) corresponds to parametrical resonance. If no positive integers m and s exist such that
(i) and/or (ii) hold then the effects of the excitation on the solutions are of higher order, i.e., of
order e2: Both types of resonance can be expected if mm ¼ 2ms; i.e.,

p2 þ m2p2 ¼ 4p2 þ 4s2p2 or 3p2 ¼ ðm2 � 4s2Þp2: ð7Þ

In other words, by choosing the integers m and s such that m2 � 4s2
X0 and p such that Eq. (7)

holds, then l is defined by l ¼ mm ¼ 2ms and two types of resonance corresponding to finite
amplitude oscillations may be expected.

Introduce the transformation ðqnðtÞ; ’qnðtÞÞ-ðAnðtÞ;BnðtÞÞ as follows:

qnðtÞ ¼ AnðtÞ sinðmntÞ þ BnðtÞ cosðmntÞ;

’qnðtÞ ¼ mn½AnðtÞ cosðmntÞ � BnðtÞ sinðmntÞ�: ð8Þ

Substitute Eq. (8) into Eq. (6) and solve the equations for ’AnðtÞ and ’BnðtÞ; giving

’An ¼ �eFnðA;B;j; a; tÞ cosðmntÞ;
’Bn ¼ eFnðA;B;j; a; tÞ sinðmntÞ; ð9Þ
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where A ¼ ðA1;A2;y;An;yÞ; B ¼ ðB1;B2;y;Bn;yÞ; and

Fn ¼
1

mn

ðAn sinðmntÞ þ Bn cosðmntÞÞ
XN
k¼1

1

8
n2p4k2ððA2

k þ B2
kÞ

"(

þ ðB2
k � A2

kÞ cosð2mktÞ þ 2AkBk sinð2mktÞÞ þ n2p2A sinðltÞ

#

þ amnðAn cosðmntÞ þ Bn sinðmntÞÞ � ðl2 � p2ÞBcn sinðltÞ

)
:

As is known from the theory of averaging, the averaged equations have solutions %AnðtÞ and %BnðtÞ
which are OðeÞ approximations to AnðtÞ and BnðtÞ; respectively, on a long 1=e time-scale. Isolated
stable critical points of the averaged system correspond with stable (quasi-) periodic solutions of
Eq. (9) in case that the systems are finite dimensional. Here, however, Eq. (9) is an infinite-
dimensional system. To the knowledge of the authors it seems not to be known whether these
stability properties of the averaged system correspond with stability properties of Eq. (9).
However, it is assumed that these results for finite-dimensional systems also hold for infinite-
dimensional systems.

The terms on the right-hand side of Eq. (9) are periodic functions with respect to t: This means
that one can approximate the functions An and Bn; for all n; by using the averaging method. In
order to apply this method to system Eq. (9), the value of l must be determined. For lamk and
la2mk; k is an arbitrary positive integer, the averaged equations of Eq. (9) are as follows:

’%An ¼ �
1

2
e a %An þ

n2p4

8mn

%Bn

XN
k¼1

k2ð %A2
k þ %B2

kÞ þ
1

2
n2ð %A2

n þ %B2
nÞ

" # !
;

’%Bn ¼ �
1

2
e a %Bn �

n2p4

8mn

%An

XN
k¼1

k2ð %A2
k þ %B2

kÞ þ
1

2
n2ð %A2

n þ %B2
nÞ

" # !
; ð10Þ

for n ¼ 1; 2; 3;y : From Eq. (10), it follows that if %Anð0Þ ¼ %Bnð0Þ ¼ 0; then %AnðtÞ � %BnðtÞ � 0 for
8t > 0: It means that if there is no initial energy in the nth mode, there will be no energy present up
to OðeÞ on a time-scale of order e�1: This allows one to truncate to those modes that have non-zero
initial energy. For l ¼ mm and la2ms; where m and s are certain values of n; an extra constant
term only occurs in the equation for %Bm but not in the one for %Am: For l ¼ 2ms and lamm; an
extra term multiplying %As and %Bs in the equation for %As and %Bs occurs. Thus, if l ¼ mm ¼ 2ms (full
resonance) so that p satisfies Eq. (7), extra terms occur in the equations for %As; %Bs; and %Bm: After
some calculations, the obtained averaged equations for %An and %Bn; n ¼ s;m; are as follows:

’%Am ¼ �
1

2
e a %Am þ

m2p4

8mm

%Bm

XN
k¼1

k2ð %A2
k þ %B2

kÞ þ
1

2
m2ð %A2

m þ %B2
mÞ

" # !
;

’%Bm ¼ �
1

2
e a %Bm �

m2p4

8mm

%Am

XN
k¼1

k2ð %A2
k þ %B2

kÞ þ
1

2
m2ð %A2

m þ %B2
mÞ

" #
þ ð�1Þmþ1B

2mp
mm

 !
;
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’%As ¼ �
1

2
e aþ

s2p2

2ms

A

� �
%As þ

s2p4

8ms

%Bs

XN
k¼1

k2ð %A2
k þ %B2

kÞ þ
1

2
s2ð %A2

s þ %B2
s Þ

" # !
;

’%Bs ¼ �
1

2
e a�

s2p2

2ms

A

� �
%Bs �

s2p4

8ms

%As

XN
k¼1

k2ð %A2
k þ %B2

kÞ þ
1

2
s2ð %A2

s þ %B2
s Þ

" # !
: ð11Þ

For nas and nam; the equations for %An and %Bn are given by Eq. (10). Supposing that %Anð0Þ =
%Bnð0Þ ¼ 0 it follows that %AnðtÞ � 0 and %BnðtÞ � 0 for nas and nam: Substitution of this result
into Eq. (11) yields the following system:

’%Am ¼ �
1

2
e a %Am þ

m2p4

16mm

%Bmð2s2ð %A2
s þ %B2

s Þ þ 3m2ð %A2
m þ %B2

mÞÞ
� �

;

’%Bm ¼ �
1

2
e a %Bm �

m2p4

16mm

%Am 2s2ð %A2
s þ %B2

s Þ þ 3m2ð %A2
m þ %B2

mÞ

 �

þ ð�1Þmþ1B
2mp
mm

� �
;

’%As ¼ �
1

2
e aþ

s2p2

2ms

A

� �
%As þ

s2p4

16ms

%Bsð3s2ð %A2
s þ %B2

s Þ þ 3m2ð %A2
m þ %B2

mÞÞ
� �

;

’%Bs ¼ �
1

2
e a�

s2p2

2ms

A

� �
%Bs �

s2p4

16ms

%Asð3s2ð %A2
s þ %B2

s Þ þ 2m2ð %A2
m þ %B2

mÞÞ
� �

: ð12Þ

It may be clear that there is a coupling between the modes s and m and if one wants to truncate
series (5) for the study of resonance one has to take into account at least m modes, where m is
determined by the values of p and l:

Based on the above results it follows that only specific combinations of l and p2 may give
periodic solutions. The values of p2 and l for which periodic solutions consisting of two modes are
found are called critical values and can easily be determined. For these critical values, mode
interaction will occur. The critical values of p2 with the corresponding values of l are given in Table 1.

3. Model interaction for the specific combinations of values of p2 and l

As stated above only the equations for n ¼ s and n ¼ m are considered. An interesting case is
p ¼ 0 corresponding to m ¼ 2s and l ¼ 2sp: The model equation as presented here can be used for
the study of the dynamics of inclined stay-cables connecting the bridge deck and pylon of a cable-
stayed bridge by assuming that the motion of the deck can be ignored. In terms of accuracy of the
model equation one could say that the motion of the bridge deck at the endpoint of the stay-cable
is assumed to be of Oðe2Þ: Substitution of qnðtÞ ¼ 0; nas and nam; into Eq. (6), gives the two
coupled second order equations:

.qm þ m2
mqm ¼ � eðm2p2qm½ 1

4
s2p2q2

s þ
1
4

m2p2q2
m þ A sinðltÞ� þ a ’qm � ðl2 � p2ÞBcm sinðltÞÞ;

.qs þ m2
s qs ¼ � eðs2p2qs½ 1

4 s2p2q2
s þ

1
4 m2p2q2

m þ A sinðltÞ� þ a ’qs � ðl2 � p2ÞBcs sinðltÞÞ: ð13Þ

It may be clear that if lamm and la2ms; using transformation (8), the averaged system of Eq. (13)
consists of four first order equations with a structure similar to Eq. (10) and has as critical point
ð0; 0; 0; 0Þ which is stable for a > 0: If l ¼ mm but la2ms then ð0; 0; 0; 0Þ is not a critical point unless
j ¼ 0 (or OðeÞ), corresponding to B ¼ 0: In this case, the stable critical point ð0; 0; %Am; %BmÞ is
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found. If lamm and l ¼ 2ms then in the ðj2aÞ parameter plane there is domain defined by
ðcosðjÞ � 2ðams=Cs2p2ÞÞ > 0 where there are two critical points: one, the origin, is unstable; the
other, ð %As; %Bs; 0; 0Þ; is stable. In the complement of this domain the only critical point is the stable
origin. All cases discussed above concern systems with one stable critical point and hence one
mode, implying there is no interaction between modes s and m: Therefore, in what follows only
the case l ¼ mm þ OðeÞ ¼ 2ms þ OðeÞ will be studied. By setting lt ¼ 2t; where l = 2ðms þ eZÞ;
system (13) becomes

q00
mðtÞ þ 4qmðtÞ ¼ �

e
ms

m2p2

ms

qmðtÞ
1

4
s2p2q2

s ðtÞ þ
1

4
m2p2q2

mðtÞ þ A sinð2tÞ
� ��

þ aq0
mðtÞ � bm sinð2tÞ � 8Zqm

�
þ Oðe2Þ;

q00
s ðtÞ þ qsðtÞ ¼ �

e
ms

s2p2

ms

qsðtÞ
1

4
s2p2q2

s ðtÞ þ
1

4
m2p2q2

mðtÞ þ A sinð2tÞ
� ��

þ aq0
sðtÞ � bs sinð2tÞ � 2ZqsðtÞ

�
þ Oðe2Þ; ð14Þ

where bm ¼ ð�1Þmþ12ðmp=msÞB; bs ¼ ð�1Þsþ12ðm2p=smsÞB; and Z is detuning coefficient of the
frequency of excitation. A prime denotes differentiation with respect to t: For the sake of
simplicity, the case l near 2p ðp ¼ 0Þ is considered. This value implies a system describing the
interaction between first ðs ¼ 1Þ and second ðm ¼ 2Þ modes:

q00
2 þ 4q2 ¼ �

e
p

4pq2
1

4
p2q2

1 þ p2q2
2 þ A sinð2tÞ

� �
þ aq0

2 þ 4B sinð2tÞ � 8Zq2

� �
;

q00
1 þ q1 ¼ �

e
p

pq1
1

4
p2q2

1 þ p2q2
2 þ A sinð2tÞ

� �
þ aq01 � 8B sinð2tÞ � 2Zq1

� �
: ð15Þ
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Table 1

The critical values of p2 and l

p2 ¼ 1
3
p2ðm2 � 4s2Þ l2 ¼ 4

3
p2ðm2 � s2Þ Critical points

One mode : two modes

0 ðm ¼ 2sÞ 4p2 ðm ¼ 2Þ ð0; 0; %A20; %B20Þ : ð %A12; %B12; %A21; %B21Þ
16p2 ðm ¼ 4Þ ð0; 0; %A40; %B40Þ : ð %A24; %B24; %A42; %B42Þ
36p2 ðm ¼ 6Þ ð0; 0; %A60; %B60Þ : ð %A36; %B36; %A63; %B63Þ
^ ^
l ¼ 4s2p2 ð0; 0; %Am0; %Bm0Þ : ð %Asm; %Bsm; %Ams; %BmsÞ

5
3p

2 ðs ¼ 1; m ¼ 3Þ 32
3
p2 ð0; 0; %A30; %B30Þ : ð %A13; %B13; %A31; %B31Þ

4p2 ðs ¼ 1; m ¼ 4Þ 20p2 ð0; 0; %A40; %B40Þ : ð %A14; %B14; %A41; %B41Þ

3p2 ðs ¼ 2; m ¼ 5Þ 28p2 ð0; 0; %A50; %B50Þ : ð %A25; %B25; %A52; %B52Þ

^ ^ ^
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In the first equation of Eq. (15), the excitation term 4B sinð2tÞ is relevant for having an Oð1Þ
amplitude response, whereas in the second equation pq1A sinð2tÞ is the relevant excitation term.
Clearly, the first term describes ordinary and the second one, parametric resonance. System (15)
can be used for the study of rotor-bearings system as well [14].

By using transformation (8) for n ¼ 1 and n ¼ 2; the following averaged system is
obtained:

%A0
2 ¼ �

e
2p

ða %A2 þ %B2½g2ðð %A
2
1 þ %B2

1Þ þ 6ð %A2
2 þ %B2

2ÞÞ � 4Z�Þ;

%B0
2 ¼ �

e
2p

ða %B2 � %A2½g2ðð %A
2
1 þ %B2

1Þ þ 6ð %A2
2 þ %B2

2ÞÞ � 4Z� � 2BÞ;

%A0
1 ¼ �

e
2p

ðbþ %A1 þ %B1½g1ð3ð %A
2
1 þ %B2

1Þ þ 8ð %A2
2 þ %B2

2ÞÞ � 2Z�Þ;

%B0
1 ¼ �

e
2p

ðb� %B1 � %A1½g1ð3ð %A
2
1 þ %B2

1Þ þ 8ð %A2
2 þ %B2

2ÞÞ � 2Z�Þ; ð16Þ

where g1 ¼
1
16
p3; g2 ¼

1
4
p3; and b7 ¼ a71

2
pA:

In what follows, the critical points and their dependence on the parameters a; Z; A and B will be
investigated. Recall that these parameters are supposed to be Oð1Þ and that A and B are defined by
A ¼ C cosðjÞ and B ¼ C sinðjÞ: The following special cases will be studied.

3.1. The case without damping, i.e. a ¼ 0

From the first two equations of Eq. (16), it follows that %B2 ¼ 0: As a consequence, the following
system of algebraic equation is obtained:

%A2½g2ðð %A
2
1 þ %B2

1Þ þ 6 %A2
2Þ � 4Z� þ 2B ¼ 0;

b %A1 þ %B1½g1ð3ð %A
2
1 þ %B2

1Þ þ 8 %A2
2Þ � 2Z� ¼ 0;

b %B1 þ %A1½g1ð3ð %A
2
1 þ %B2

1Þ þ 8 %A2
2Þ � 2Z� ¼ 0; ð17Þ

where b ¼ 1
2
pA: From the last two equations, it follows that %A1 ¼ 7 %B1: Clearly, the following

type of critical points are found:

type 1: ð %A1; %B1; %A2; %B2Þ ¼ ð0; 0; %A2; 0Þ; type 1 CP;

type 2: ð %A1; %B1; %A2; %B2Þ ¼ ð %A1; %A1; %A2; 0Þ; type 2 CP;

type 3: ð %A1; %B1; %A2; %B2Þ ¼ ð %A1;� %A1; %A2; 0Þ; type 3 CP:

ð18Þ

The first type of critical points are on the %A2-axis and can be studied as solutions of a cubical
equation. Particularly, their dependence on Z is well known and is depicted in Fig. 2.

In what follows, a ðj; ZÞ-diagram will be constructed which gives an overview of all possible
critical points for C fixed. Starting with %A1 ¼ %B1; system (17) can be rewritten as

%A3
2 �

8

5p3
ðZþ bÞ %A2 þ

12B

5p3
¼ 0;

ð4Z� 2bÞ � p3 %A2
2 > 0;

%A2
1 ¼

8

3p3
ð2Z� bÞ �

4

3
%A2
2: ð19Þ
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The case 4Z� 2b� p3 %A2
2 ¼ 0 corresponds with the first type of critical points in Eq. (18). System

(19) defines domains in the ðZ� jÞ-plane where there exists one, two, or three
real non-zero solutions ð %A1; %A1; %A2; 0Þ: These domains are found by determining the
boundary curves which follow from D ¼ 0; where D is the discriminant of the cubic equation in
standard form in Eq. (19) and the equality ð4Z� 2bÞ � p3 %A2

2 ¼ 0 holds. In this equality, %A2 as
solution (obtained from the Cardano formulas) depending on Z and j is substituted. As a result
one obtains Fig. 3. In this figure, there are four domains I–IV with one, two, or three critical
points: I—1, II—2, III—3, IV—1. Here, II—2 means that in domain II there exist two critical
points of the type ð %A1; %A1; %A2; 0Þ: When one looks separately at the case %A1 ¼ %B1 ¼ 0
corresponding to the so-called semi-trivial solution one obtains the following cubical equation
for %A2:

3
2
p3 %A3

2 � 4Z %A2 þ 2B ¼ 0: ð20Þ

This equation differs from the first equation in Eq. (19). By setting the discriminant D ¼ 0 one
obtains a curve indicated P72P9 in Fig. 4 on which there are two critical points of the type
ð0; 0; %A2; 0Þ: On the left-hand side, there is one critical point and on the right-hand side there are
three critical points. In the domains in Fig. 4, the notation ðn;mÞ means that there are n critical
points of type ð0; 0; %A2; 0Þ and m of type ð %A1; %A1; %A2; 0Þ:
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Fig. 2. The frequency–response curve R2 ¼ %A2
2 of Eq. (16) with j ¼ 1

4
p and C ¼ 6: The stability only applies to the

ð %A2; %B2Þ-plane.
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Fig. 3. Four domains with real solutions of system (19) for C ¼ 6:

Fig. 4. Eight domains with real solutions of types 1 and 2 of system (17) for C ¼ 6:
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In a similar way, the critical points of type ð %A1;� %A1; %A2; 0Þ are analyzed. They are found from
the system

%A3
2 �

8

5p3
ðZ� bÞ %A2 þ

12B

5p3
¼ 0;

ð4Zþ 2bÞ � p3 %A2
2 > 0;

%A2
1 ¼

8

3p3
ð2Zþ bÞ �

4

3
%A2
2: ð21Þ

The resulting boundary curves are additionally presented in Fig. 5 which follows from Fig. 4.
Clearly, new curves P102P5 and P112P6 are found defined in the 12 domains. The type and the
number of critical points in these domains and on the boundary curves are given in Table 2.

It is of interest to look what happens if one chooses j fixed, for instance j ¼ 1
4
p; and starts in

domain I and then increases Z: In particular, it is of interest to compute explicitly R1 ¼ %A2
1 þ %B2

1

and R2 ¼ %A2
2 as functions of Z: The results are presented in Figs. 6 and 7. Clearly, in domain I

there is one real solution R2 as sketched in Fig. 6. In Q1; this solution bifurcates into a stable (in
the sense Lyapunov) and an unstable one. When one arrives in Q2 two new solutions appear, a
stable and an unstable one. Analogously, in Q3 two new unstable ones appear whereas in Q4 one
new unstable, and in Q5 one stable and one unstable solution appear leading totally to nine critical
points in domain XII. All bifurcation points Qi; i ¼ 1; 2;y; 5; are indicated in Figs. 5–7.

The semi-trivial solution as indicated in Fig. 6 corresponds with the response curve in Fig. 2.
The difference however is that in Fig. 6, a part of the curve with stable solutions has become
unstable due to the interaction with the first mode. Apparently, this part is unstable in the
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Fig. 5. Twelve domains with real solutions of types 1–3 of Eq. (17) for C ¼ 6:
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four-dimensional phase space. The most interesting solutions are the non-trivial ones in the four-
dimensional phase space of type 3 in Eq. (18). Starting from a large value of Zo36 and
subsequently decreasing Z one observes at Q5 two jumps, R1 decreases whereas R2 increases. A
remarkable result is that the amplitude of the parametrical induced mode at Q5 before the jump is
much larger (i.e., a factor 30) than the amplitude of the transverse excited mode.

3.2. The case with (positive) damping

When there is no damping system (16) has both unstable and stable critical points of type 1. The
eigenvalues of the stable critical points of type 1 have zero real part implying that no conclusions
can be drawn about the stability of the corresponding periodic solutions of the original system.
The curves on which these critical points are located are given in Figs. 2 and 6 and indicated with
semi-trivial solutions.
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Table 2

The number of critical points of Eq. (16) describing Fig. 5

Domains/curves/points The number of critical points of Eq. (16) Total

ð0; 0;A2; 0Þ ðA11;A11;A21; 0Þ ðA12;�A12;A22; 0Þ

I 1 0 0 1

II 1 0 1 2

III 1 1 1 3

IV and V 3 0 1 4

VI and VII 3 1 1 5

VIII 3 2 1 6

IX 3 1 3 7

X 3 3 1 7

XI 3 2 3 8

XII 3 3 3 9

P5P10 1 0 0 1

P5P8 1 0 1 2

P7P8 2 0 1 3

P1P2 and P4P8 3 0 1 4

P8P9 2 1 1 4

P2P4 and P2P12 3 1 1 5

P4P6 and P4P13 3 2 1 6

P11P12 3 1 2 6

P3P12 3 1 3 7

P12P13 3 2 2 7

P3P13 3 2 3 8
%P6P13 3 3 2 8

P5 1 0 0 1

P2 and P8 2 0 1 3

P9 2 1 1 4

P4 3 1 1 5

P12 3 1 2 6

P6 and P13 3 2 2 7
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Fig. 6. Stability response curves of the second mode with respect to the detuning of Eq. (16) with j ¼ 1
4
p and C ¼ 6:

Fig. 7. Stability response curves of the first mode with respect to the detuning of Eq. (16) with j ¼ 1
4
p and C ¼ 6:
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When one considers however small positive damping, the centre points in the ð %A2; %B2Þ-plane as
indicated in Fig. 2 now become positive attractors. In what follows, the number of critical points
of system (16) with a > 0 and their stability will be studied in more detail. The critical points of
Eq. (16) are solutions of

a %A2 þ %B2½g2ðð %A
2
1 þ %B2

1Þ þ 6ð %A2
2 þ %B2

2ÞÞ � 4Z� ¼ 0;

a %B2 � %A2½g2ðð %A
2
1 þ %B2

1Þ þ 6ð %A2
2 þ %B2

2ÞÞ � 4Z� � 2B ¼ 0;

bþ %A1 þ %B1½g1ð3ð %A
2
1 þ %B2

1Þ þ 8ð %A2
2 þ %B2

2ÞÞ � 2Z� ¼ 0;

b� %B1 � %A1½g1ð3ð %A
2
1 þ %B2

1Þ þ 8ð %A2
2 þ %B2

2ÞÞ � 2Z� ¼ 0; ð22Þ

In order to have non-zero solutions %A1 and %B1 from the last two equations of Eq. (22) it follows
that the condition A2 � 4ða2=p2ÞX0 should hold. The last two equations of Eq. (22) can be
reduced to

ðg1ð3ð %A
2
1 þ %B2

1Þ þ 8ð %A2
2 þ %B2

2ÞÞ � 2ZÞ2 ¼ b2 � a2: ð23Þ

Eq. (23) implies the possibilities:

ðaÞ g1ð3ð %A
2
1 þ %B2

1Þ þ 8ð %A2
2 þ %B2

2ÞÞ � 2Z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
;

ðbÞ g1ð3ð %A
2
1 þ %B2

1Þ þ 8ð %A2
2 þ %B2

2ÞÞ � 2Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
: ð24Þ

From the last two possibilities and the case %A1 ¼ %B1 ¼ 0; it follows that the co-ordinates of the
critical points can be classified in three types:

type 1: ð %A1; %B1; %A2; %B2Þ ¼ ð0; 0; %A2; %B2Þ; type 1 CP;

type 2: ð %A1; %B1; %A2; %B2Þ ¼ %A1;

ffiffiffiffiffiffiffiffi
bþ
jb�j

s
%A1; %A2; %B2

 !
; type 2 CP;

type 3: ð %A1; %B1; %A2; %B2Þ ¼ %A1;�

ffiffiffiffiffiffiffiffi
bþ
jb�j

s
%A1; %A2; %B2

 !
; type 3 CP: ð25Þ

Substitution of the first equation (24) in the first and second equations of Eq. (22) gives

R2½g2ðR1 þ 6R2Þ � 4Z�2 þ a2R2 � 4B2 ¼ 0;

ð2Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ � 8g1R2 > 0;

R1 ¼
1

3g1

ð2Z�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ �

8

3
R2; ð26Þ

where R1 ¼ %A2
1 þ %B2

1 and R2 ¼ %A2
2 þ %B2

2: Now substitution of the third into the first equation of

Eq. (26) and then introducing the new variable R2 ¼ Y þ 4
15g2

ðZþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ; yields

Y 3 þ k11Y þ d11 ¼ 0;

2
15 ð22Z� 23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ � p3Y > 0; ð27Þ
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where

k11 ¼ �
4

25p6

16

3
ðZþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ2 � 9a2

� �
;

d11 ¼ �
16

25p6
9B2 �

4

5p3
ðZþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ

16

27
ðZþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ2 þ 3a2

� �� �
:

In similar way, but by using now the second equation of Eq. (24), one obtains a second system of
equations with solutions of type 3:

Z3 þ k12Z þ d12 ¼ 0;

2
15
ð22Zþ 23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ � p3Z > 0; ð28Þ

where

k12 ¼ �
4

25p6

16

3
ðZ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ2 � 9a2

� �
;

d12 ¼ �
16

25p6
9B2 �

4

5p3
ðZ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ

16

27
ðZ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ2 þ 3a2

� �� �
;

R2 ¼Z þ
16

15p3
ðZ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q
Þ;

R1 ¼
1

3g1

2Zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

q� �
�

8

3
R2:
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Fig. 8. Eighteen domains with real solutions of types 1, 2, and 3 of Eq. (22) for a ¼ 2p and C ¼ 6:
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As indicated in Section 3.1, an overview of the number of real solutions of types 1–3 of Eq. (22)
and their dependence on Z and j for certain values of a and C can be given in the diagram in
Fig. 8. Apparently, in this figure 18 domains can be distinguished. The boundary curves
separating the domains are defined as solutions of system (22). In Figs. 9 and 10, the solutions

R2 ¼ %A2
2 þ %B2

2 and R1 ¼ %A2
1 þ %B2

1 are given as a function of Z for C ¼ 6; j ¼ 1
4
p and a ¼ 2p:

Let us suppose that Z is increased while j is held constant. This process is represented by the
line through the points Q1;Q2;y;Q8 in Fig. 8. For ZoQ1 only the CPs of type 1 exist. Between
Q1 and Q2 there are CPs of type 1 and CPs of type 3, etc. An overview of the domains and the
number of critical points is given in Table 3.

In Figs. 9 and 10, R2 and R1 are plotted as a function of Z: The presence of jump phenomena
can be observed in these figures. These phenomena are due to the non-linearities and excitations.
To explain this one starts in domain I in Fig. 8 for j ¼ 1

4
p and follows the line indicated and

parallel to the Z-axis. At the point Q1 one enters domain II, at Q2 one enters domain VIII, etc. All
points Q1;Q2;y;Q8 are also indicated in Figs. 9 and 10. In these figures, however, the Z co-
ordinate of Q0

i is indicated Qi; i ¼ 1; 2;y; 8: At points Q1 in Fig. 9 one clearly leaves the CPs of
type 1 (corresponding with the transversally excited mode) because the parametrically excited
mode comes in. By increasing Z one arrives at Q8 and a jump occurs. Then by decreasing Z again a
jump occurs at Q5 where now the amplitude increases, while simultaneously in Fig. 10 at Q5 the
amplitude decreases with a jump. It is of interest to note that additionally two types of stable
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Fig. 9. Stability response curves of the second mode with respect to the detuning of Eq. (16) with C ¼ 6; j ¼ 1
4
p and

a ¼ 2p:
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critical points are present: the one on the upper Q0
3Q0

6 curve and the one on the lower curve
starting at Q0

2 all belonging to the CPs of type 1. When one follows the solutions along these curve
apparently at the ends only a jump downward in Fig. 9, and a jump upward in Fig. 10 are
possible. At the left end of the Q3Q6 curve corresponding to the CPs of type 1 the parametric
excited mode comes in; hence, a jump to the lower ST curve, starting at Q0

2 is not possible and the
jump should end at the Q0

1Q0
8 curve. At the right end of the Q0

3Q0
6 curve, no parametric excitation

comes in and hence a jump to the lower curve of CPs of type 1 takes place. As in the case without
damping, the difference in order of magnitude of the parametrically excited mode can easily be a
factor 10 greater than the amplitude of the transversally excited mode. For j ¼ 1

4
p; the excitation

amplitudes A and B are equal. This does not, however, imply that the excitation energy in both
directions is equal. On the other hand, there is a non-linear interaction between the modes
implying that energy transfer between the two modes is possible.

4. Conclusion

In this paper, the simultaneous small amplitude excitation in horizontal and vertical directions
at an endpoint of an inclined stretched string is studied. As the attention is focused to transverse
standing wave modes, a modified Kirchhoff model is used implying that acceleration of horizontal
elements of the string are neglected. The mechanisms of mode generation are combining classical
resonance with parametric resonance. The conditions to have this combination of resonances are
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Fig. 10. Stability response curves of the first mode with respect to the detuning of Eq. (16) with C ¼ 6; j ¼ 1
4
p and

a ¼ 2p:
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given by p2 ¼ 1
3
ðm2 � 4s2Þp2 and l2 ¼ 4

3
ðm2 � s2Þp2; where pX0 describes the linear elastic

behaviour of the medium in which the string is embedded, p ¼ 0 corresponds with a model for a
vibrating string in air under normal conditions, l is the excitation frequency and m and s are
integers representing mode numbers. An interesting case is p ¼ 0; l near 2p; and m ¼ 2 and s ¼ 1;
describing the interaction of the first and second modes. Three parameters, i.e., the damping
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Table 3

The number of critical points of Eq. (16) describing Fig. 8

Domains/curves/points The number of critical points of Eq. (16) Total

ð0; 0;A2;B2Þ ðA1;
ffiffiffiffiffiffi
bþ
jb�j

q
A1;A2;B2Þ ðA1;�

ffiffiffiffiffiffi
bþ
jb�j

q
A1;A2;B2Þ

I and XVIII 1 0 0 1

II 1 0 1 2

IV , V and XV 1 1 1 3

VI 3 0 0 3

III and VIII 3 0 1 4

VII , X and XI 3 1 1 5

XIV 1 3 1 5

XVI 1 1 3 5

IX 3 2 1 6

XII 3 3 1 7

XVII 1 3 3 7

XIII 3 3 3 9

P1P2; P2P4; and P17P19 1 0 0 1

P2P5; P6P7; and P9P10 1 0 1 2

P3P4 and P17P18 2 0 0 2

P4P17 3 0 0 3

P5P6; P7P8; and P8P10 2 0 1 3

P4P5 and P10P11 2 1 1 4

P5P12 and P7P10 3 0 1 4

P11P15 1 2 1 4

P15P16 and P16P19 1 1 2 4

P6P11; P6P12; and P7P11 3 1 1 5

P11P12 and P12P13 3 2 1 6

P11P14 2 3 1 6

P14P15 1 3 2 6

P15P19 1 2 3 6

P13P14 3 3 2 8

P14P17 2 3 3 8

P2 and P19 1 0 0 1

P3; P4; P17; and P18 2 0 0 2

P8 1 0 1 2

P5; P6; P7; and P10 2 0 1 3

P13 3 0 0 3

P11 2 1 1 4

P16 1 1 2 4

P12 3 1 1 5

P15 1 2 2 5

P14 2 3 2 7
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coefficient ðaÞ; the angle of inclination ðjÞ; and the detuning coefficient ðZÞ are relevant to describe
this interaction. Equations are derived for the time-varying behaviour of the mode amplitudes.
Fix points of these equations corresponding to time-periodic solutions, i.e., modes with constant
amplitudes, are analyzed. A classification of all critical points and their stability are given. Of
particular interest are the critical points in R4; corresponding to non-trivial solutions (CPs of types
2 and 3) and describing mode interaction. A number of amplitude jumps are found with saddle-
node bifurcation as underlying mechanism. A remarkable result is that when the horizontal and
vertical excitation amplitudes are equal (corresponding with an inclination of 1

4
p) the order of

magnitude of the mode response may be quite different: modes generated by parametric excitation
may easily have amplitudes ten times larger than the amplitudes of the transversally excited
modes. The model equation as presented here can be used for the study of the dynamics of
inclined stay-cables connecting the bridge deck and pylon of a cable-stayed bridge. Due to the
inclination of the stay cables, an aerodynamically unstable pylon will simultaneously induce
horizontal and vertical motions of the cable.
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